?

基于活體微生物揭示蚯蚓對污泥耐藥基因轉歸的影響

2022-07-19 01:01魏楓沂徐俊杰李建輝董夕琳
中國環境科學 2022年7期
關鍵詞:活體菌門蚯蚓

魏楓沂,徐俊杰,陳 進,李建輝,黃 魁,2*,董夕琳,夏 慧

基于活體微生物揭示蚯蚓對污泥耐藥基因轉歸的影響

魏楓沂1,徐俊杰1,陳 進1,李建輝1,黃 魁1,2*,董夕琳3,夏 慧1

(1.蘭州交通大學環境與市政工程學院,甘肅 蘭州 730070;2.甘肅省黃河水環境重點實驗室,甘肅 蘭州 730070;3.長春水務集團有限公司,吉林 長春 130000)

為削減污泥蚯蚓堆肥產物中耐藥基因(ARGs),以無蚯蚓組為對照,采用疊氮溴化丙錠對蚯蚓堆肥樣品進行預處理,探究蚯蚓對污泥中活微生物種群及其ARGs的影響.結果顯示,與對照組相比,蚯蚓堆肥產物中有機物礦化度與降解量分別顯著提升82.5%與5.2%(<0.05).并且接種蚯蚓使其產物中放線菌門的豐度顯著增加了65.6%(<0.05),而厚壁菌門和擬桿菌門的豐度分別顯著降低了74.7%和34.6%(<0.05).相較于對照組,蚯蚓堆肥致使1、2、F和M基因豐度分別顯著減少了66.5%、82.8%、72.8%和77.6%(<0.05),但B的豐度顯著增加了5.7倍(<0.05).蚯蚓堆肥產物中I1基因豐度比對照組顯著降低了67.2%(<0.05),蚯蚓處理后ARGs總絕對豐度為4.19×1013copies/g,ARGs總去除率為82.6%,比對照組高45.4%.研究表明,蚯蚓可通過改變活細菌種群結構,減少ARGs潛在活體宿主的豐度,進而降低其傳播擴散的潛在風險.

堆肥;微生物種群;抗性基因;蚯蚓糞;污泥資源化

隨著我國城市污水處理量的逐年增加,剩余污泥產量也與日俱增[1].然而,當前多數污水廠剩余污泥穩定化處理能力不足,污泥處理處置形勢非常嚴峻[2].此外,污泥成分極為復雜,既含有碳、氮、磷等資源性物質,也含有重金屬、持久性有機污染物、ARGs、微塑料等污染性物質[3].其中ARGs是一種新型的生物污染物,在環境中具有較強的擴散傳播能力[4].研究表明,剩余污泥中ARGs種類多樣,總豐度高達1015copies/g[5].同時,污泥中多元的微生物亦為ARGs的水平轉移起到促進作用,增加人畜共患抗生素抗性致病細菌的傳播風險[5-6].因此,如何消減污泥處理過程中的ARGs,已成為污泥處理處置所要解決的關鍵問題[7].

蚯蚓堆肥通過蟲體與微生物的相互作用完成有機物的生物降解與穩定,具有工藝簡單、能耗低、蚓糞肥效高等優點[8-9],被認為是一種生態環境友好的綠色技術.由于污泥來源及性質復雜多樣,堆肥處理后的蚯蚓糞中亦含有大量的ARGs.雖有研究表明蚯蚓堆肥可減少污泥中ARGs總豐度,但各研究結果存在爭議性[10-11].例如相關研究發現蚯蚓堆肥能有效降低污泥中磺胺類、四環素類抗性基因和整合子的豐度[12-13],陳景陽等[15]也證實蚯蚓堆肥可以顯著降低整合子的豐度,控制ARGs的傳播.但另有研究報道污泥蚯蚓糞中2、G及C的豐度在堆肥后顯著增加[14-15].前人的研究均基于總DNA,未區分堆肥體內的活死菌可能是造成以上結果存在差異的原因之一.雖然死菌編碼的ARGs仍有傳播潛力,但環境中ARGs只有在活體微生物內才能進行代謝和轉錄等生命活動[16].因此,活體微生物體內ARGs的豐度及轉移機制更為重要.然而目前關于ARGs的研究極少關注活體微生物.

疊氮溴化丙錠(PMA)可在強光下進入膜受損細胞,形成不能PCR擴增的修飾DNA[17],已廣泛應用于細菌、病毒等各種微生物的活性檢測[18].因此,本研究采用PMA對堆肥樣品進行預處理,結合熒光定量PCR和高通量測序技術,分析蚯蚓處理污泥過程中活體微生物及其ARGs的影響,旨在為削減污泥蚯蚓糞中ARGs提供科學依據.

1 材料和方法

1.1 供試材料

選用赤子愛勝蚓()作為堆肥蚓種,實驗前蚯蚓用脫水污泥飼養馴化.堆肥實驗反應器選用帶蓋的矩形塑料箱(60cm×40cm×30cm).供試污泥取自蘭州市安寧區七里河污水廠脫泥車間(含水率73%),供試污泥的理化性質見表1.

1.2 實驗方法

將10kg新鮮脫水污泥投加至反應器中,塊狀污泥稍加分散,堆體厚度為10cm.之后接種1200條單體重約0.5g活躍的赤子愛勝蚓作為蚯蚓處理開始堆肥實驗,以不添加蚯蚓的污泥作為對照處理.每個處理設3個重復,實驗在室溫(20~25℃)下進行30d.為保持水分、濕度和有氧條件,在各反應器上覆蓋帶孔保鮮膜,每隔一周手動翻堆減少污泥顆粒積壓團聚,翻堆后噴灑少量自來水.堆肥20d后,蚯蚓處理組中污泥全部轉化為顆粒狀蚯蚓糞,將蚯蚓從堆肥反應器中取出,堆肥產物繼續腐熟10d.隨后從各反應器中取樣,一式兩份.一份自然風干后研磨,過60目篩,置于4℃冰箱中保存,用于理化性質分析;另一份新鮮樣品直接經過PMA處理后提取DNA,并置于-20℃冰箱中冷凍保存,用于DNA相關分析.

1.3 測定方法

1.3.1 理化性質分析 采用灼燒減量法測定樣品有機質(HJ 761-2015)[19].將風干研磨樣品與去離子水混勻(干樣:水=1:50;質量濃度),磁力攪拌30min后測定混合液的pH值(雷磁,PHS-3C,上海)和電導率(雷磁,DDS-307,上海).將上述混合液稀釋10倍后,經0.45μm薄濾膜抽濾,采用碳氮分析儀(耶拿,MULTI N/C2100,德國)測定溶解性有機碳.硝酸鹽氮采用紫外分光光度法(HJ/T 346-2007)[20],氨氮采用納氏試劑分光光度法(HJ 535-2009)[21],總氮采用堿性過硫酸鉀消解紫外分光光度法(HJ 636-2012)[22],總磷采用鉬酸銨分光光度法(GB 11893-89)[23]測定.具體理化測試參照黃魁等[24]方法進行.

1.3.2 PMA處理與DNA提取 對采集樣品的PMA預處理參考Van Frankenhuyzen等[25]的方法進行,簡述如下.將1g新鮮樣品加入200mL無菌超純水和2mL磷酸緩沖鹽溶液(0.01mol/L,pH=7.4)中,充分混勻后以300r/min磁力攪拌30min.隨后取2mL混勻液,加入5μL PMA(25μmol/L),將其充分均勻后,在4℃下靜置10min.隨后將溶液在發光二極管光解裝置(Takara,EM200,日本)中光解20min.每隔5min將離心管取出搖勻一次,以確保PMA能充分與死菌DNA結合.取上述經PMA處理后的樣品用DNeasy?Power Soil?Kit(QIAGEN,德國)試劑盒提取DNA,并用1%瓊脂糖凝膠電泳檢測其濃度.

1.3.3 熒光定量PCR 采用熒光定量PCR儀(Takara,TP700,日本)對細菌16S rDNA(V3~V4區)、四環素類抗性基因(M)、大環內酯類抗性基因(B、F)、磺胺類抗性基因(1、2)以及移動遺傳元件(MGEs)整合酶基因(I1)進行定量.引物序列及PCR擴增條件參照文獻[14]的方法進行.所用引物均購置于生工生物工程(上海)股份有限公司.25μL的定量PCR反應體系為:TB Green II(Takara,日本)12.5μL,20μmoL上下游引物各0.5μL, DNA模板1μL,DNA-free超純水10.5μL.利用TB Green II與雙鏈 DNA結合發出的強烈熒光信號來監測整個擴增過程,擴增效率控制在90%~110%.然后通過Ct值(擴增循環次數)和標準曲線對樣品中DNA的起始濃度進行定量檢測.其中繪制標準曲線的標準品為攜帶目的基因的質粒(Takara,pMD20-T,大連),詳細制備過程見文獻[26].

1.3.4 PCR和高通量測序 采用帶有Barcode堿基信息的細菌通用引物341F(5'-CCTACGGGAGGC- AGCAG-3')和806R(5'-GGACTACVSGGGTATCT- AAT-3')對16S rDNA的V3~V4區進行擴增.PCR擴增使用Phusion? High-Fidelity PCR Master Mix with GC Buffer(New England Biolabs)的高效高保真酶進行,其反應條件為:98℃預變性30s;30個循環包括98℃變性15s,58℃退火15s,72℃延伸15s;72℃終延伸1min.所得擴增產物使用2%濃度瓊脂糖凝膠進行電泳檢測,并利用Thermo Scientific公司GeneJET 膠回收試劑盒對其進行純化.使用Illumina公司TruSeq DNA PCR-Free Library Preparation Kit建庫試劑盒進行文庫構建,經過Qubit定量和文庫檢測合格后,使用NovaSeq 6000平臺進行上機測序(諾禾致源生物信息科技有限公司,北京).所得序列使用FLASH(v1.2.7)進行拼接,而后使用QIIME(v1.9.1)進行質控過濾.Tags序列通過(https://github.com/ torognes/vsearch/)與物種注釋數據庫進行比對檢測嵌合體序列,去掉嵌合體,得到有效Clean reads.使用Uparse(v7.0.1001)對序列進行聚類,隨后通過MUSCLE 3.8.31與Silva 138數據庫(http://www.arb- silva.de/)比對分類,最終得到有效的測序數據.測序結果已上傳至NCBI數據庫,序列號為SAMN21235626~21235634.

1.4 統計方法

使用Statistica 10.0軟件對樣品的理化性質、ARGs數量在各組之間的差異進行單因素方差分析(One-way ANOVA)和相關性分析,顯著性水平為0.05.ARGs的豐度圖和活微生物細菌群落豐度堆積圖使用OriginPro 2018(version 9.5)繪制.用HemI 1.0軟件繪制熱圖.用Canoco 4.5軟件對環境因子、微生物和ARGs之間的關系進行冗余分析.

2 結果與討論

2.1 堆肥前后理化性質的變化

電導率和有機質的變化常用來表征蚯蚓堆肥過程中有機物降解與轉化的程度.由表1可知,實驗結束后,蚯蚓堆肥組的電導率較對照組相比顯著增加了0.82倍(<0.05),而有機質下降了1.40%.電導率的增加可能是由于蚯蚓提升了污泥中有機物的礦化作用,釋放出礦物鹽和無機離子等[27].在蚯蚓與微生物的共同作用下,有機質的降解速率提升.溶解性有機碳(DOC)可以作為判斷堆肥腐熟的指標,相關研究[28]表明堆肥產物中DOC含量為4g/kg時即可認為腐熟.相比對照組,蚯蚓組DOC減少了10.42%.這可能是由于蚯蚓的取食、破碎等刺激作用促進了微生物量的增長[29],加速了堆肥基質中有機質的分解,進而加快了蚯蚓對DOC的利用[30],產物蚯蚓糞的穩定化程度較好.

表1 供試污泥及不同處理堆肥產物的理化性質

注:同列指標后字母不同表明其兩兩之間具有顯著性差異(<0.05),同行字母之間沒有比較意義,下同.

表1結果顯示,堆肥結束后兩處理組硝酸鹽氮的含量均顯著增加(<0.05),且蚯蚓組比對照組顯著提升了4.26倍(<0.05),表明蚯蚓能提升堆肥過程中的硝化作用.吳穎等[31]研究發現蚯蚓堆肥可顯著增加氨氧化古菌和氨氧化細菌的數量.同時,蚯蚓活動增加了污泥內部的孔隙率,為硝化細菌提供充足的氧氣,促進硝化反應的進行,從而提高了有機物的轉化速率.對總氮而言,污泥蚯蚓堆肥產物比對照組增加了13.47%,但二者并不顯著.這可能是在蚯蚓活動過程中,蚯蚓排泄物及其體壁分泌的黏液所致[32].本文蚯蚓堆肥組總磷相比于對照組增加了17.39%,可能是因為微生物滲出有機酸、磷酸酶的活化導致的有機磷礦化[33].Busato等[34]人認為磷能富集在蚯蚓的糞便中,并向可利用的形態轉化.以上結果表明,蚯蚓堆肥可顯著提高有機物降解轉化的速率,使堆肥產物更加穩定,其產物蚯蚓糞含大量營養元素,具有很大的農用潛力.

2.2 堆肥前后活細菌群落的變化

由表2可知,與對照組相比,蚯蚓堆肥組活細菌群落的Shannon指數和Simpson指數分別增加了1.25%和0.34%.可見,蚯蚓能增加堆肥產物中活細菌的豐富度和均勻度,促進微生物的生長繁殖.此前黃魁等[24]基于總DNA的污泥蚯蚓堆肥實驗中,蚯蚓堆肥細菌群落的Shannon指數為7.40,相較于無蚯蚓組減小了2.63%.蚯蚓堆肥活細菌多樣性的增加,可能是由于蚯蚓的攝食和掘穴活動增加了體系孔隙率,促進了好氧微生物的生長,同時蚯蚓黏液和蚓糞中富含的多種可生物利用的營養組分[35],也可以刺激某些微生物的生長.

表2 供試污泥與堆肥產物中微生物群落的Shannon和Simpson指數

圖1 供試污泥與不同處理堆肥產物中活細菌門和屬水平相對豐度

由圖1(a)可知,變形菌門(32.6%)、厚壁菌門(19.4%)、擬桿菌門(8.6%)與放線菌門(6.2%)是原始污泥活細菌的優勢菌門.堆肥結束后,對照產物中活細菌的優勢菌門依次為變形菌門(43.7%)、擬桿菌門(14.2%)和放線菌門(12.8%).而蚯蚓堆肥產物活細菌種群中變形菌門(35.2%)占比最大,其次是放線菌門(21.2%)和擬桿菌門(5.6%).上述結果表明,與對照組相比,蚯蚓堆肥后活細菌種群在門水平結構上發生了顯著改變,其中放線菌門豐度增加了65.6%,而厚壁菌門和擬桿菌門豐度分別減少了74.6%和34.6%.先前針對總細菌DNA的研究[24]結果顯示,接種蚯蚓致使堆肥產物中變形菌門與厚壁菌門減少,而擬桿菌門和放線菌門顯著增加(<0.05).放線菌門常被認為是堆肥腐熟的指示菌門[36],蚯蚓堆肥產物中較高的活放線菌豐度表明蚯蚓堆肥可產生更穩定的污泥蚯蚓糞.擬桿菌門能將污泥中有機碳、有機氮化合物轉化為相對穩定的產物[13],經過蚯蚓腸道轉運會降低擬桿菌門的豐度[37].也可能是本文采用了PMA預處理對活死細菌進行區別,而活細菌中的擬桿菌門豐度較小.

圖1(b)為活細菌屬水平復雜熱圖,對照組中活體微生物(6.1%)、(3.8%)、(2.7%)、(1.9%)和(1.8%)等菌屬豐度占比較高,而蚯蚓堆肥產品中優勢活體菌屬為(6.9%)、(4.1%)、(3.8%)、(1.9%)和(1.7%).結果顯示,與對照組相比,蚯蚓組中和的豐度分別顯著增加了2.6%和1.9%(<0.05).其中貝氏谷氨酸桿菌()屬于農業益生菌[38],進一步說明蚯蚓污泥堆肥產物的農用潛力高.放線菌屬()占比的增加很可能與堆肥過程中抗生素類物質有 關.

2.3 堆肥前后ARGs和MGEs的豐度變化

兩處理組堆肥前后各ARGs絕對豐度的變化如圖2所示,對照組和蚯蚓組堆肥后1、F和M的豐度變化呈相近的下降趨勢.相較于供試污泥,對照組和蚯蚓組中1、F和M的豐度分別顯著降低了46.3%~82.1%、48.3%~86.0%和66.1%~ 92.4%(<0.05).其中蚯蚓堆肥對1、F和M的去除率均顯著高于對照組(<0.05),見圖2(a、d、e).陳景陽等[15]的研究證實,蚯蚓可以在污泥蚯蚓堆肥過程中去除部分四環素抗性基因.先前的研究結果表明,與對照處理相比,蚯蚓堆肥產物中1和F分別降低了24.6%和69.4%[11].這表明蚯蚓堆肥可以減少污泥活細菌中1、F和M的豐度,ARGs的選擇性減少可能歸因于蚯蚓的腸道消化過程[26].此外,與原始污泥相比,堆肥后對照組中2的豐度顯著增加5.5倍(<0.05). Qian等[39]在對牛糞進行堆肥后也發現其中2豐度增加了21.4~30.8倍.相比而言,蚯蚓堆肥產物中2的豐度比對照組顯著降低了82.8%(<0.05),說明蚯蚓能降低污泥中2的豐度,見圖2(b).對B來說,其豐度在兩處理組中均低于原始污泥.但與對照組相比,蚯蚓堆肥產物中B的豐度顯著增加了5.74倍(<0.05).在此前好氧堆肥實驗中發現,污泥中B豐度可減少23.9%~99.3%[40].由此推斷,在堆肥體內添加蚯蚓能增加B基因的豐度.同時B和F豐度的不同變化趨勢可能與其抗性機制不同有關.

IS代表供試污泥,C代表對照,E代表蚯蚓堆肥,下同

圖3 蚯蚓堆肥前后ARGs的總絕對豐度

大量可移動遺傳元件(質粒、整合子、轉座子)在細菌群落ARGs的水平轉移中發揮著重要作用[41],因此本文分析了一類整合子I1在堆肥過程中的豐度變化,見圖2(f).與原始污泥相比,I1的絕對豐度在對照組中增加了91.1%,但在蚯蚓組中顯著減少了37.3%(<0.05).該結果進一步表明蚯蚓能夠降低堆肥產物中ARGs水平轉移的風險.Cui等[26]研究新鮮蚯蚓排泄糞便發現,經PMA處理后蚯蚓糞便中I1的絕對豐度較原始污泥降低了82.1%,進而證實蚯蚓腸道短消化對I1的豐度具有顯著削減作用.而本實驗蚯蚓堆肥產物中I1豐度的減少率低于其在蚯蚓糞便當中,可能是由于經過腸道短消化后,I1的豐度在堆肥產物活微生物體內再次增加.另外,兩組中2與I1的豐度變化具有顯著正相關性(<0.05),表明2的增多可能與堆肥產物中I1的豐度有關[42].

如圖3所示,堆肥結束后對照組與蚯蚓組中代表性ARGs的總豐度均顯著降低(<0.05).兩處理組對ARGs總去除率分別為37.2%和82.6%.與對照組相比,蚯蚓堆肥后的污泥活體微生物中ARGs的總豐度顯著減少了72.3%(<0.05).可見,蚯蚓堆肥可顯著降低堆肥產物中ARGs的絕對豐度[43],減輕污泥蚯蚓糞后續農用的潛在生物風險.先前針對總細菌DNA的研究[11]結果顯示,蚯蚓堆肥減少了整合子的類型和豐度,堆肥后污泥中的ARGs總豐度比對照組降低了41.5%.Cui等[26]研究發現蚯蚓腸道中的厭氧環境可能會使部分攜帶ARGs的優勢需氧細菌難以生存,蚯蚓可在一定程度上降低堆肥產物中ARGs的絕對豐度.說明蚯蚓活動對活體微生物的群落變化影響更大.同時這種微生物的群落變化和可移動遺傳元件的減少可能是蚯蚓堆肥過程中ARGs豐度減少的主要原因.在蚯蚓組樣品中絕對豐度占比最高的ARGs為F(2.88×1013copies/g),豐度最低的為M(3.30×108copies/g).此前的研究[44]顯示蚯蚓堆肥產物中2豐度最高,其次為X.說明活體微生物中ARGs多樣性與之前總DNA中有差別.

2.4 環境因子、微生物和ARGs之間的關系

圖4顯示活細菌群落及環境因子對堆肥過程中ARGs豐度變化的貢獻,其中活細菌群落前10個菌門可以解釋驅動ARGs變化的62.1%,表明ARGs的豐度受活細菌群落的影響較大.其中蚯蚓堆肥樣品中高含量的EC及NO3-,表明蚯蚓可以促進污泥中有機物的降解與礦化.同時,EC對F豐度的增加有顯著的積極影響(<0.05).以上結果表明本文所研究的理化性質會導致ARGs的豐度發生改變,控制這些關鍵的環境因子有助于去除堆肥體中的ARGs.

圖4 ARGs、活細菌種群和環境因子的冗余分析

先前研究表明放線菌門是抗生素的主要生產者,可以攜帶和傳播ARGs[45].本文蚯蚓堆肥前后Actinobacteria(放線菌門)豐度顯著增加了2.8倍,但蚯蚓堆肥產物中ARGs的總絕對豐度卻顯著降低.造成這一結果的原因可能是放線菌門產生的抗生素可以殺死污泥中的ARGs,使大部分ARGs存在于游離態DNA中.本文研究的是堆肥體系中活體微生物的菌群結構,而此前的研究并未區分活死微生物,導致宿主體內可表達的ARGs定量不準確.此外,I1與Proteobacteria(變形菌門)和Bacteroidetes (擬桿菌門)存在顯著正相關性(<0.05),這一結果顯示蚯蚓堆肥過程中Proteobacteria和Bacteroidetes可能是I1的潛在攜帶菌.進一步相關分析表明I1菌屬水平的宿主為和,該宿主在堆肥產物中較高的豐度可能會促進ARGs的水平傳播[46].以上相關性結果表明,在蚯蚓組中,變形菌門的和是B的潛在宿主,M、F和1的共同潛在宿主屬于厚壁菌門,推斷它們之間可能存在共生互惠關系.可見,蚯蚓能通過控制堆肥產物中Proteobacteria和Bacteroidetes的豐度來降低參與ARGs水平轉移的I1基因的增殖,減小ARGs傳播擴散的潛在風險.

冗余分析結果顯示pH值、DOC、EC及NO3-等環境因子可以調控ARGs的豐度,且活細菌群落變化對堆肥過程中ARGs的變化有一定的影響[14].因此,環境因子對ARGs豐度的影響主要取決于它們對其潛在宿主細菌種群結構的影響[11-47].本文結果顯示,蚯蚓可通過改變污泥中環境因子及活體微生物種群結構,進而對蚯蚓堆肥產物中ARGs的分布和豐度產生影響[48].

3 結論

3.1 污泥蚯蚓堆肥使活體細菌群落的豐富度和均勻度顯著增加,污泥蚯蚓糞中變形菌門(35.2%)、放線菌門(21.2%)、擬桿菌門(5.6%)為優勢菌門.

3.2 蚯蚓堆肥后的污泥活細菌中總ARGs和I1的絕對豐度分別顯著減少了72.3%和37.3% (< 0.05),污泥蚯蚓堆肥能減輕ARGs在環境中的傳播風險.

3.3 蚯蚓通過改變堆體環境,影響活細菌群落演替,減少活微生物中ARGs潛在宿主菌的豐度,是削減污泥蚯蚓糞中ARGs的主要原因.

[1] 戴曉虎.我國污泥處理處置現狀及發展趨勢 [J]. 科學, 2020,72 (6):30-34.

Dai X H. Applications and Perspectives of Sludge Treatment and Disposal in China [J]. Science, 2020,72(6):30-34.

[2] 安 葉,張義斌,黎 攀,等.我國市政生活污泥處置現狀及經驗總結 [J]. 給水排水, 2021,57(S1):94-98.

An Y, Zhang Y B, Li P, et al. Current situation and experience summary of municipal sewage sludge treatment and disposal in China [J].Water & Wastewater Engineering, 2021,57(S1):94-98.

[3] 戴曉虎,張 辰,章林偉,等.碳中和背景下污泥處理處置與資源化發展方向思考 [J]. 給水排水, 2021,57(3):1-5.

Dai X H, Zhang C, Zhang L W, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality [J]. Water & Wastewater Engineering, 2021,57(3):1-5.

[4] 羅 義,周啟星.抗生素抗性基因(ARGs)——一種新型環境污染物 [J]. 環境科學學報, 2008,(8):1499-1505.

Luo Y, Zhou Q X. Antibiotic resistance genes(ARGs) as emerging pollutants [J]. Acta Scientiae Circumstantiae, 2008,(8):1499-1505.

[5] 彭蘭生,關孟欣,黃 魁,等.蚯蚓攝食污泥對其腸道功能區微生物種群及耐藥基因的影響 [J]. 中國環境科學, 2022,42(1):465-473.

Peng L S, Guan M X, Huang K, et al. Effects of excess sludge fed by earthworms on microbial community and antibiotic resistance genes in their intestinal functional area [J]. China Environmental Science, 2022, 42(1):465-473.

[6] 楊鳳霞,毛大慶,羅 義,等.環境中抗生素抗性基因的水平傳播擴散 [J]. 應用生態學報, 2013,24(10):2993-3002.

Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013,24(10):2993-3002.

[7] 薛重華,孔祥娟,王 勝,等.我國城鎮污泥處理處置產業化現狀、發展及激勵政策需求 [J]. 凈水技術, 2018,37(12):33-39.

Xue C H, Kong X J, Wang S, et al. Industrialization status, development analysis and incentive policy demands of municipal sludge treatment and disposal industry in china [J]. Water Purification Technology, 2018,37(12):41-47.

[8] 王亞利,楊 光,熊才耘,等.蔬菜廢棄物蚯蚓堆肥對雞毛菜生長的影響 [J]. 農業環境科學學報, 2017,36(10):2129-2135.

Wang Y L, Yang G, Xiong C Y, et al.Effect of vegetable waste vermicompost on the growth of Brassica chinensis [J]. Journal of Agro-Environment Science, 2017,36(10):2129-2135.

[9] Hait S, Tare V. Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material [J]. Waste Management, 2011,31(3):502-511.

[10] Li Z H, Yuan L, Shao W, et al. Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem [J]. Journal of Hazardous Materials, 2021,420:126672.

[11] Huang K, Xia H, Zhang Y, et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis [J]. Bioresource Technology, 2020,297:122451.

[12] 夏 慧,陳學民,黃 魁.宏基因組學揭示蚯蚓對污泥中抗生素抗性基因的影響 [J]. 蘭州交通大學學報, 2019,38(3):80-84.

Xia H, Chen X M, Huang K. Effects of earthworms on antibiotic resistance genes during vermicomposting of dewatered sludge by metagenomic analysis [J]. Journal of Lanzhou Jiaotong University, 2019,38(3):80-84.

[13] Huang K, Xia H, Wu Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting [J]. Bioresource technology, 2018,259:32-39.

[14] 關孟欣,彭蘭生,陳景陽,等.玉米芯生物炭對污泥蚯蚓糞中微生物種群及ARGs的影響 [J]. 中國環境科學, 2021,41(6):2744-2751.

Guan M X, Peng L S, Chen J Y, et al. Effects of corncob biochar on the fate of microbial communities and antibiotics resistance genes during vermicomposting of dewatered sludge [J]. China Environmental Science, 2021,41(6):2744-2751.

[15] 陳景陽,夏 慧,黃 魁,等.四環素對污泥蚯蚓糞中微生物種群和抗性基因的影響 [J]. 環境科學, 2019,40(7):3263-3269.

Chen J Y, Xia H, Huang K, et al. Effects of tetracycline on microbial communities and antibiotic resistance genes of vermicompost from dewatered sludge [J]. Environmental Science, 2019,40(7):3263-3269.

[16] Miller J H, Novak J T, Knocke W R, et al. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters [J]. Frontiers in Microbiology, 2016,7:263.

[17] Nocker A, Cheung C Y, Camper A K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells [J]. Journal of Microbiological Methods, 2006,67(2):310-320.

[18] 陶怡君,諶志筠,何秋水.疊氮溴化丙錠結合qPCR檢測與區分活菌和死菌的研究進展 [J]. 微生物學免疫學進展, 2020,48(6):63-68.

Tao Y J, Zhan Z Y, Hei Q S. Advances in detection and differentiation of live and dead bacteria by PMA- qPCR technology [J]. Progress in Microbiology and Immunology, 2020,48(6):63-68.

[19] HJ 761-2015 固體廢物有機質的測定灼燒減量法 [S].

HJ 761-2015 Solid waste-Determination of organic matter-Ignition loss method [S].

[20] HJ/T 346-2007 水質硝酸鹽氮的測定紫外分光光度法(試行) [S].

HJ/T 346-2007 Water quality-Determination of nitrate-nitrogen- Ultraviolet spectrophotometry [S].

[21] HJ 535-2009 水質氨氮的測定納式試劑分光光度法 [S].

HJ 535-2009 Water quality-Determination of ammonia nitrogen Nessler’s reagent spectrophotometry [S].

[22] HJ 636-2012 水質總氮的測定堿性過硫酸鉀消解紫外分光光度法 [S].

HJ 636-2012 Water quality-Determination of total nitrogen- Alkaline potassium persulfate digestion UV spectrophotometric method [S].

[23] GB 11893-89 水質總磷的測定鉬酸銨分光光度法 [S].

GB 11893-89 Water quality-Determination of total phosphorus- Ammonium molybdate spectrophotometric method [S].

[24] 黃 魁,夏 慧,陳景陽,等.蚯蚓對城市污泥蚯蚓堆肥過程中微生物特征變化的影響 [J]. 環境科學學報, 2018,38(8):3146-3152.

Huang K, Xia H, ChenJ Y, et al. Effects of earthworms on changes of microbial feature during vermicomposting of municipal sludge [J]. Acta Scientiae Circumstantiae, 2018,38(8):3146-3152.

[25] Van Frankenhuyzen J K, Trevors J T, Lee H, et al. Molecular pathogen detection in biosolids with a focus on quantitative PCR using propidium monoazide for viable cell enumeration [J]. Journal of Microbiological Methods, 2011,87(3):263-272.

[26] Cui G, Bhat S A, Li W, et al. Gut digestion of earthworms significantly attenuates cell-free and-associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles [J]. Science of the Total Environment, 2019,691:644-653.

[27] Hait S, Tare V. Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material [J]. Waste Management, 2011,31(3):502-511.

[28] Khan N, Clark I, Sánchez-Monedero M A, et al. Maturity indices in co-composting of chicken manure and sawdust with biochar [J]. Bioresource Technology, 2014,168:245-251.

[29] Aira M, Monroy F, Domínguez J. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry [J]. Science of the total Environment, 2007,385(1-3):252-261.

[30] Nigussie A, Bruun S, de Neergaard A, et al. Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting [J]. Waste Management, 2017,62:43-51.

[31] 吳 穎,黃 魁,夏 慧,等.污泥四環素含量對蚯蚓堆肥中氨氧化菌群的影響 [J]. 環境科學, 2019,40(6):2954-2960.

Wu Y, Huang K, Xia H, et al. Effects of different concentrations of tetracycline in sludge on ammonia oxidizers during vermicomposting [J]. Environmental Science, 2019,40(6):2954-2960.

[32] Tripathi G, Bhardwaj P. Decomposition of kitchen waste amended with cow manure using an epigeic species () and an anecic species () [J]. Bioresource Technology, 2004, 92(2):215-218.

[33] Gaume A, M?chler F, Frossard E. Aluminum resistance in two cultivars of Zea mays L.:root exudation of organic acids and influence of phosphorus nutrition [J]. Plant and Soil, 2001,234(1):73-81.

[34] Busato J G, Lima L S, Aguiar N O, et al. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria [J]. Bioresource Technology, 2012,110:390-395.

[35] Zhao L, Wang Y, Yang J, et al. Earthworm–microorganism interactions: a strategy to stabilize domestic wastewater sludge [J]. Water Research, 2010,44(8):2572-2582.

[36] Gerzova L, Babak V, Sedlar K, et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries [J]. PLoS One, 2015,10(7):e0132892.

[37] Wang N, Wang W, Jiang Y, et al. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms () feeding on cow manure [J]. Science of the Total Environment, 2021,787:147392.

[38] Ji J, Yuan D, Jin C, et al. Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01containing ACC deaminase activity [J]. Acta Physiologiae Plantarum, 2020, 42(4):1-17.

[39] Qian X, Sun W, Gu J, et al. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure [J]. Journal of Hazardous materials, 2016,315:61-69.

[40] Wei H, Ma J, Su Y, et al. Effect of nutritional energy regulation on the fate of antibiotic resistance genes during composting of sewage sludge [J]. Bioresource Technology, 2020,297:122513.

[41] 安新麗,蘇建強.活性污泥抗生素抗性基因研究進展 [J]. 微生物學通報, 2019,46(8):2069-2079.

An X L, Su J Q. Resistome in activated sludge: current knowledge and future directions [J]. Microbiology China, 2019,46(8):2069-2079.

[42] Duan M, Li H, Gu J, et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce [J]. Environmental Pollution, 2017,224:787-795.

[43] Gómez-Brandón M, Aira M, Lores M, et al. Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes [J]. PloS One, 2011,6(9):e24786.

[44] 李建輝,張瑩瑩,黃 魁,等.宏基因組學解析蚯蚓糞中微生物種群及耐藥基因的組成 [J]. 中國環境科學, 2020,40(12):5375-5382.

Li J H, Zhang Y Y, Huang K, et al. Composition of microbial community and antibiotic resistance genes in vermicomposts revealed by metagenomic analysis [J]. China Environmental Science, 2020, 40(12):5375-5382.

[45] Zhang J, Lu T, Shen P, et al. The role of substrate types and substrate microbial community on the fate of antibiotic resistance genes during anaerobic digestion [J]. Chemosphere, 2019,229:461-470.

[46] Shen Q, Tang J, Wang X, et al. Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system [J]. Ecotoxicology and Environmental Safety, 2021,213:111981.

[47] Zhang R, Gu J, Wang X, et al. Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks [J]. Journal of Hazardous Materials, 2018,358:82-91.

[48] Sun W, Qian X, Gu J, et al. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion [J]. Bioresource Technology, 2017,234:217-223

Effects of earthworms on the antibiotic resistance genes of vermicompost from dewatered sludge revealed by active microbes.

WEI Feng-yi1, XU Jun-jie1, CHEN Jin1, LI Jian-hui1, HUANG Kui1,2*, DONG Xi-lin3, XIA Hui1

(1.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2.Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China;3.Changchun Water Group Co. Ltd, Changchun 130000, China)., 2022,42(7):3425~3433

To eliminate the abundances of ARGs in sludge vermicompost, this study aimed to reveal the underlying effects of earthworms on the active bacterial community structure and their ARGs involved in vermicomposting systems for sludge recycling. For this, vermicomposting with and without earthworms was set up in parallel. Moreover, the dyeing pretreatment for samples with propidium monoazide (PMA) was adopted to screen out the DNA of active bacteria. The results showed that the electrical conductivity of sludge vermicompost was significantly increased by 82.5% (<0.05), the degradation rate of organic matter was increased by 5.2% (<0.05). Compared with the control treatment, the abundance of Actinobacteria significantly increased by 65.6% (<0.05), while the abundance of Firmicutes and Bacteroidetes significantly decreased by 74.7% and 34.6%, respectively. Meanwhile, vermicomposting led to the selected ARGs abundances ofM,1,2,B andF significantly decreased by 66.5%, 82.8%, 72.8% and 77.6% (<0.05), while the abundance ofB significantly increased by 5.7times (<0.05) in active bacteria, compared to the counterpart. The abundance ofI1gene in vermicompost products significantly reduced by 67.2% compared with the control treatment. The total absolute abundance of ARGs was 4.19×1013copies/g, and the total removal rate of ARGs was 82.6%, 45.4% higher than that of the counterpart. This study suggests that earthworms can reduce the abundance of dominant hosts of ARGs by modifying the active microbial community structure of sludge, thus reducing the associated dissemination risks of the spread of ARGs.

composting;microbial community;resistance genes;vermicompost;sludge recycling

X171.5

A

1000-6923(2022)07-3425-09

魏楓沂(1997-),女,甘肅白銀人,蘭州交通大學碩士研究生, 主要研究方向為生物污染物歸趨與控制.發表論文1篇.

2021-12-06

國家自然科學基金資助項目(51868036,52000095);蘭州交通大學百人計劃;甘肅省青年博士基金資助項目(2021-QB051);甘肅省科技計劃(20JR2RA002);甘肅省優秀研究生“創新之星”項目(2021CXZX-629)

* 責任作者, 教授, huangkui@mail.lzjtu.cn

猜你喜歡
活體菌門蚯蚓
特殊竹林土壤細菌群落結構及多樣性研究
不同強化處理措施對銅污染土壤微生物多樣性的影響
基于自主核酸提取方法分析單油井采出液微生物*
讓活體肝移植研究走上世界前沿
剛竹屬3個竹種根際土壤微生物群落結構
活體器官移植,你怎么看?
基于安全加密的人臉活體檢測技術
畫蚯蚓等
揭秘蚯蚓的10大秘密
保護蚯蚓
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合