?

南漪湖上覆水溶解性有機質的光譜特征

2022-07-19 01:10李海斌謝發之李國蓮翟紅俠袁志偉
中國環境科學 2022年7期
關鍵詞:腐殖質溶解性腐殖酸

李海斌,謝發之*,李國蓮,翟紅俠,龔 雪,劉 站,羅 錕,袁志偉

南漪湖上覆水溶解性有機質的光譜特征

李海斌1,2,3,謝發之1,2,3*,李國蓮2,翟紅俠1,3,龔 雪1,3,劉 站1,3,羅 錕1,3,袁志偉2

(1.安徽建筑大學材料與化學工程學院,安徽 合肥 230601;2.水污染控制與廢水資源化安徽省重點實驗室,安徽 合肥 230601;3.安徽省先進建筑材料國際聯合研究中心,安徽 合肥 230601)

為考察南漪湖上覆水中溶解性有機質(DOM)的光譜特征與來源,采用紫外-可見光吸收光譜(UV-Vis)與三維熒光光譜(EEMs)為工具,并結合平行因子分析(PARAFAC)、熒光區域積分分析(FRI)、相關性分析、主成分分析與聚類分析對DOM進行定性與定量分析.結果顯示,UV-Vis參數(440)、2/3、3/4、R表明DOM具有腐殖化特征與自生源特征,且2/3、3/4與(440)呈顯著正相關關系(<0.01,<0.05),R與(440)無顯著相關關系(>0.05),說明腐殖酸濃度越高則DOM相對分子量越大,但無法依據腐殖酸濃度大小判斷DOM來源.根據(440)計算獲得溶解性有機碳(DOC)平均濃度為26.79mg/L,且該湖泊出口附近DOC濃度為10.15mg/L.熒光指數(:、FI、BIX、HIX、Fn(280)、Fn(355))顯示該湖泊DOM具有腐殖化程度較低及強自生源特征,類蛋白組分(Fn(280))相對濃度的空間分布上由西向東逐漸增大,而腐殖酸類組分(Fn(355))相對濃度峰值出現在入湖口與出湖口.通過PARAFAC解析出3種組分,分別為類富里酸(C1)、類色氨酸(C2)和類腐殖酸(C3),且C1、C2、C3含量分別占總組分強度21.96%、13.36%、84.21%.FRI法分析顯示類蛋白物質所占比例之和(區域I + II)為49.65%,該結果說明水體已受到了人為因素影響.通過相關性分析結果顯示,C1、C3與、BIX呈顯著負相關系(<0.001),C2與:、BIX、Fn(355)呈正相關系(<0.001).通過主成分分析與聚類分析,南漪湖上覆水中DOM在16個位點間呈現不同特征,但整體上水體中DOM來源受內源輸入影響較為顯著,應加強該湖泊內源釋放污染物控制與管理.

溶解性有機質;紫外-可見吸收光譜;三維熒光光譜;平行因子分析(PARAFAC);熒光區域積分分析(FRI);聚類分析

南漪湖位于宣城市宣州區與郎溪縣交界,其屬于泥沙長期封淤積水而成的淺水湖泊[1].該湖泊作為長江下游南岸外流淡水湖,其水源主要來自新、舊郎川河,且水源經過新河莊匯入水陽江后直達長江[2].由于該湖泊受人為活動影響,其生物化學參數(浮游植物組成、葉綠素濃度、總氮磷濃度)表明該湖泊已由富營養化初級階段向中級階段過渡[3].另外,溶解性有機質(DOM)作為非均質高分子化合物,其容易影響水體中各種污染物的遷移與轉化[4].南漪湖水體中DOM不僅影響其自身生態功能,而且對長江流域生態系統也會構成重要影響.為此,揭示南漪湖上覆水DOM組成、空間分布及來源具有重要意義.

三維熒光光譜(EEMs)與紫外-可見光吸收光譜(UV-Vis)是表征DOM分子結構、組成與來源的重要技術,尤其在開展湖泊DOM溯源方面已存在諸多報道.Wang等[5]以EEMs研究了呼倫湖水體中DOM組成與來源,該湖泊DOM濃度達到6.46~42.87mg/L,且濃度變化表現為夏季最高、冬季最低,冬季受結冰使得DOM空間分布呈顯著差異,湖岸周圍濃度高于湖中心,該湖泊DOM主要由類腐殖質與類蛋白組成,陸源是該湖泊DOM主要來源.Lü等[6]采用EEMs解析了太湖DOM與顆粒有機物(POM)中熒光組分及來源,其熒光指數的時空分布表明POM主要來自內源, POM夏、秋季以類蛋白為主,冬、春季以類腐殖質為主,類色氨酸對POM成分貢獻最大,河口處POM與其它區域相比表現出更多外源性特征,而湖泊中DOM則主要表現為內源特征.由于UV-Vis可提取DOM特征光譜參數,進而獲取DOM類型、相對濃度、芳香性強弱、疏水性組分含量等信息,將該光譜與EEMs相結合有其必要性.Wang等[7]將EEMs與UV-Vis結合剖析太湖水華暴發早期上覆水體DOM,其DOM主要由酪氨酸、類色氨酸與類腐殖質組成,有色DOM在波長280,350nm處的紫外吸收系數分別為6.63~29.87,1.84~10.41m-1,全湖DOM濃度為2.86~11.83mg/L,且濃度從東南向西北呈上升趨勢,水華早期上覆水中DOM主要來自藻類活動及代謝.Ren等[8]采用EEMs與UV-Vis考察不同水文條件下南四湖水體DOM分布特征,該湖泊中DOM主要來自內源釋放,空間尺度上湖底腐殖質含量與腐殖化程度比湖面低,時間尺度上DOM貢獻表現為類腐殖質比類蛋白強,該結果可能與南水北調及沉水植物衰亡有關.由于南漪湖點源污染及農業面源污染負荷增加,圍欄養殖過程也未采取較好控制措施,其生態系統功能已呈退化現象.該湖泊中DOM信息尚不明確,采用EEMs與UV-Vis結合考察該湖泊上覆水DOM光譜特征,有利于從定性與定量角度揭示DOM性質、濃度、分布特征等,理論方面能系統闡釋各光譜參數間相關性,實踐方面可為長江中下游湖泊群水質數據完善、環境治理及風險防控等提供參考.

通過采集南漪湖不同位點水面(上覆水)水樣,利用UV-Vis與EEMs考察該湖泊上覆水DOM光譜特征,并結合平行因子分析(PARAFAC)、熒光區域積分分析(FRI)、相關性分析、主成分分析與聚類分析對該湖泊DOM組成、分布與來源等情況予以解析,以期為南漪湖水生態環境決策與保護提供科學依據.

1 材料與方法

1.1 樣品采集

圖1 采樣點示意

根據南漪湖水源入口與出口位置選取16個典型采樣點,于2020年11月28~29日對南漪湖上覆水進行采樣,具體位置如圖1所示.采樣時通過GPS定位器定位,在租賃漁船上通過有機玻璃水質采樣器采集水面最上層水,采集水樣裝入已清洗的不透明聚四氟乙烯瓶中保存,并及時運至實驗室處理.水樣用0.45μm濾膜過濾獲得待測液,并將待測液及時進行光譜檢測,其pH值、電導率、溶解氧濃度采用便攜式水質測定儀現場測定.

1.2 光譜分析

采用UV-5500PC紫外可見分光光度計(上海元析儀器有限公司)測定UV-Vis,以超純水作為空白樣品,室溫條件下在1cm光程石英比色皿中測試,掃描波長為200~700nm.吸收系數采用公式(1)、(2)計算[9],2/3值、3/4值分別通過250與365nm、300與400nm處吸光度之比計算[10],光譜斜率R計算為275~295nm與350~450nm區域光譜斜率之比.EEMs測定采用F-4700熒光分光光度計(日立高新技術公司),基本參數為:光電倍增管(PMT)電壓為700V;激發與發射狹縫寬度均為5nm;響應時間為自動;掃描速度為12000nm/min,設置激發波長(x)為220~ 450nm, 發射波長(m)為280~550nm.新鮮度指數(:)為x=310nm時,m在380nm熒光強度與420~ 435nm波段最大熒光強度比值;熒光指數(FI)為x= 370nm時,m在450nm與500nm處熒光強度比值[11];生物源指數(BIX)為x=310nm時,m在380nm與430nm處熒光強度比值;腐殖化指數(HIX)為x= 254nm時,m=435~480nm與m=300~345nm的熒光強度積分值的比值;Fn(280)、Fn(355)分別為x= 280nm處m=340~360nm間最大熒光強度、x= 355nm處m=440~470nm間最大熒光強度[12-14].

式中:為波長,nm;*()為條件下未去除誤差的吸收系數,m-1;()為條件下去除誤差的吸收系數, m-1;()為條件下吸光度;為光程路徑,0.01m.

1.3 數據處理與繪圖

采用Matlab 2019b軟件對EEMs進行PARAFAC與FRI分析,采用Origin 2021b軟件進行相關性分析、主成分分析與聚類分析,繪圖工具為軟件Origin 2021b與Sufer 8.0.

2 結果與討論

2.1 水體理化性質

南漪湖上覆水理化性質如表1所示,上覆水平均pH值為7.58,標準偏差為0.13,水質呈弱堿性.水體平均電導率為380.56mS/cm,其數值較大,且其最大值與最小值差距較大.水體平均溶解氧濃度為9.26mg/L,水體呈現好氧狀態.

表1 上覆水理化性質

2.2 紫外-可見吸收光譜

圖2(a)為DOM的UV-Vis曲線.由于受環境因子、水動力作用、光化學催化、生物化學等過程影響,各位點間UV-Vis曲線強度存在明顯差異[15].吸光度均隨波長增加呈減小趨勢,且226~250、250~280nm處吸收峰分別由無機陰離子、木質素磺酸及其衍生物組分所引起[16-17].如圖2(b)為不同位點(440)變化圖,在位點16處(440)達到最大值8.19m-1,即說明位點16處腐殖酸濃度最高[18].由于地理位置顯示該處遠離河流入口,水動力條件不足會使水體復氧能力衰退,此外水溫增高會加快微生物及藻類殘體分解有機物速度,從而增大水體腐殖化程度.如圖2(c)為(440)、2/3、3/4、R變化,其值波動分別為0.66~8.19、2.85~7.40、1.37~7.57、0.01~4.32,均值分別為(2.37±1.12)、(4.66±1.34)、(3.92±1.24)、(1.48± 0.46).DOM分子量與2/3值呈負相關性,南漪湖2/3值與Erlandsson等[19]報道的湖泊2/3平均值4.70高度接近,說明兩湖泊間水體DOM分子量相似.腐殖化程度與3/4值呈負相關性,南漪湖3/4平均值顯然高于3.50,但56%位點要低于3.50,說明南漪湖腐殖質主要以類腐殖酸為主[20].南漪湖81%樣品R值均大于1,說明南漪湖上覆水DOM主要來自內源釋放,其釋放途徑主要為水生物代謝與生物殘骸腐化等作用[21].圖2(d)顯示(440)與2/3、3/4呈顯著正相關系(<0.01,<0.05),即說明腐殖酸濃度高則DOM分子量相對較大.其可能是在自然環境或在光譜檢測過程中,光照條件會使大分子量DOM發生降解形成了小分子量DOM,且降解過程中DOM濃度會發生降低[22].由于(440)反映腐殖酸濃度高低,而R反映DOM來源,(440)與R無顯著相關性(>0.05),說明在統計學角度無法從腐殖酸濃度判斷DOM來源,該結果正好與實際情況相吻合,即無法單純從腐殖酸濃度明確DOM來源.根據文獻[23]中方法可定量計算溶解性有機碳(DOC)濃度,計算的平均DOC濃度為26.79mg/L,該湖泊出口附近DOC濃度為10.15mg/L,此結果用于評估南漪湖上覆水DOM對長江水質的影響.

2.3 三維熒光光譜

2.3.1 熒光參數 為考察DOM的EEMs特征,選取熒光參數(:、FI、BIX 、HIX、Fn(280)、Fn(355))進行分析,結果如圖3所示.:變化為0.92~1.68,其平均值為(1.06±0.10),說明水體中新生DOM較多,且水體生物活性較高,內源特征較為明顯.FI變化為1.71~2.49,其平均值為(1.95±0.14).當FI<1.20、FI>1.80、1.20

2.3.2 熒光組分 利用PARAFAC對DOM的EEMs進行分析,核心一致度評價最優主成分為3,即解析獲得主要熒光組分為3種,其相應激發與發射光譜圖如圖4所示.組分主要為2個類腐殖質組分(C1,C3)和1個類蛋白組分(C2),且3種熒光組的光譜特征如表3所示.C1組分在天然水體中廣泛存在,屬于陸源性短波小分子類微生物腐殖質,其不易光降解及生物降解,主要來源為森林地區、濕地、地表徑流、土壤滲濾液等,與細菌以及藻類細胞釋放的胞外腐殖質類似[37].C2組分最大波峰特征顯示其主要來源為水體內部產生的低激發態類色氨酸物質,屬于游離或結合在蛋白質中的微生物代謝產物.C3組分為與富里酸相似的大分子疏水性長波類陸源UVA類腐殖質, 其主要來源為陸源,該組分可光降解及生物降解,但生物降解、生物活動是其潛在的二次來源.

表2 不同水體中DOM光譜參數對比結果

根據Zhou等[43]方法將DOM熒光區域分成5個區域,其劃分情況如表4所示.由于FRI法是將定量分析與光譜學相結合的有效方法之一,可以較為細致闡明DOM組成與熒光光譜變化規律[44].圖5(a)為南漪湖上覆水區域積分面積百分比堆積圖,溶解性微生物代謝副產物在湖入口位點6處濃度最高,在湖入口位點4處濃度最低,該結果應是生物活動與水動力相互作用結果.色氨酸類蛋白濃度在湖入口位點7處最高,說明此處受到人為活動影響最大.圖5(b)為積分體積與百分比平均值圖,區域II平均百分含量最高為34.29%,其在26.18%~47.21%波動變化,芳香類蛋白物質濃度較高則說明水體容易受到污水排放影響.區域III平均百分含量(29.61%)次于區域II,說明紫外光區類富里酸濃度較高,DOM受到沉積物與河流中陸源腐殖質影響.區域 IV與V平均百分含量分別為14.17%、6.57%,而類蛋白物質所占比例之和(區域I +II)為49.65%,進一步說明水體已受到人為活動影響.

表3 熒光組分特征

表4 5個積分區域劃分

圖5 FRI分析結果

2.4 來源解析

為考察DOM熒光組分與光譜參數間關系,采用Pearson相關性分析與主成分分析(PCA)對DOM進行解析.圖6(a)為相關性分析結果,:、BIX、Fn(355)與C2呈正相關系(<0.001),:、BIX與C1、C3呈顯著負相關系(<0.001).PCA分析結果如圖6(b)所示,PCA1與PCA2分別解釋了48.30%、28.00%(共解釋76.30%變化).PCA顯示采樣點分布相對較為分散,表明不同位點間DOM存在顯著差異.圖7為南漪湖上覆水DOM研究思路,通過熒光區域積分面積百分比數據進行聚類,結果顯示位點分布相對分散.南漪湖上覆水DOM可以聚為4類,第一類主要是郎川河支流附近的樣品,第二類主要是距支流較遠樣品,第三類主要為飛鯉河支流附近樣品,第四類為前面三類所剩余樣品,說明該湖泊中DOM具有不同來源,其存在差異原因主要受地理位置、環境因素及人為因素影響.

綜上所述,由于南漪湖屬于淺水湖泊,水體流動性強使得DOM腐殖化程度低. 陸源與自生源共同作用是DOM來源,但主要以內源輸入為主.目前,湖泊DOM主要是內源輸入有南四湖[8]、五里湖[45]、蠡湖[46]等.然而,南漪湖上覆水中DOM內源輸入與該湖泊中蘆葦、菱角、蓮藕等植物殘體腐解及生物代謝密切相關.

3 結論

3.1 南漪湖上覆水UV-Vis參數(440)為0.66~ 8.19m-1,2/3與3/4值顯示南漪湖腐殖質主要以類腐殖酸為主,且(440)與2/3、3/4呈顯著正相關關系(P<0.01,<0.05).R表明其DOM內源釋放作用較強,且R與(440)與無顯著相關性(>0.05).上述參數相關性說明腐殖酸濃度越高則DOM相對分子量越大,而在統計學角度無法從腐殖酸濃度判斷DOM來源.

3.2 熒光指數(、FI、BIX 、HIX、Fn(280)、Fn(355))表明DOM來源受外源輸入與內源釋放共同作用,且腐殖酸類組分(Fn(355))相對濃度在入湖口與出湖口呈現最大值.由于南漪湖為典型淺水湖泊,其DOM腐殖化程度相對較低. PARAFAC分析鑒別獲得3種熒光組分,C1為類富里酸、C2為類色氨酸、C3類腐殖酸.FRI法分析結果顯示類蛋白物質所占比例之和(區域I + II)為49.65%,說明水體已受到了人為因素影響.

3.3、BIX與C1、C3呈顯著負相關系(< 0.001),、BIX、Fn(355)與C2呈正相關系(<0.001). PCA分析與聚類分析顯示采樣點分布相對分散,說明不同位點間DOM存在顯著差異,但DOM來源主要是以內源輸入為主.

[1] Chen W, Song B, Shu J W, et al. Vegetation history with implication of climate changes and human impacts over the last 9000years in the Lake Nanyi area, Anhui Province, East China [J]. Palaeoworld, 2021,30(3):583-592.

[2] Liu J, Shen Z, Chen W, et al. Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake [J]. International Journal of Climatology, 2021,41(3):1667-1681.

[3] Cheng L, Xue B, Zawisza E, et al. Specific species response of Cladocera to the trophic and hydrological environments of lakes: A case study of a typical shallow mesotrophic lake [J]. CATEN A, 2021,207(105630):1-12.

[4] Feng L, Zhang J, Fan J, et al. Tracing dissolved organic matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-quality control [J]. Chemosphere, 2022,286(131624):1-10.

[5] Wang W W, Zheng B H, Jiang X, et al. Characteristics and source of dissolved organic matter in Lake Hulun, a large shallow eutrophic steppe lake in Northern China [J]. Water, 2020,12(953):1-18.

[6] Lü W W, Yao X, Shao K, et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China. [J]. Environmental science and pollution research international, 2019,26(4):4027-4040.

[7] Wang S, Wang W, Chen J, et al. Characteristics of dissolved organic matter and its role in lake eutrophication at the early stage of algal blooms—A case study of Lake Taihu, China [J]. Water, 2020, 12(2278):1-17.

[8] Ren H, Yao X, Ma F, et al. Characterizing variations in dissolved organic matter (DOM) properties in Nansi Lake: a typical macrophytes-derived lake in northern China [J]. Environmental Science and Pollution Research, 2021,28(41):58730-58741.

[9] Li P, Hur J . Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review [J]. Critical Reviews in Environmental Science & Technology, 2017, 47(3):1-24.

[10] Oliveira J L, Boroski M, Azevedo J C R, et al. Spectroscopic investigation of humic substances in a tropical lake during a complete hydrological cycle [J]. Acta hydrochimica et hydrobiologica, 2006,34(6):608-617.

[11] Lu Y H, Edmonds J W, Yamashita Y, et al. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon- Washington coastal waters [J]. Ocean Dynamics, 2015,65(1):17-32.

[12] Xu X, Kang J, Shen J, et al. EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China [J]. Science of The Total Environment, 2021, 774(145297):1-9.

[13] Zhang P, Cao C, Wang Y H, et al. Chemodiversity of water-extractable organic matter in sediment columns of a polluted urban river in South China [J]. Science of the Total Environment, 2021,777(146127):1-11.

[14] Sheng Y, Yan C, Nie M, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter [J]. Ecotoxicology and Environmental Safety, 2021,223:112573:1-10.

[15] Schindler D W, Parker B R, Stainton M P, et al. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes [J]. Nature, 1996,379(6567):705-708.

[16] Khan S , Wu Y , Zhang X , et al. Estimation of concentration of dissolved organic matter from sediment by using UV-Visible Spectrophotometer [J]. International Journal of Environmental Pollution and Remediation, 2014,104:41-46.

[17] Peuravuori J, Pihlaja K. Isolation and characterization of natural organic matter from lake water: Comparison of isolation with solid adsorption and tangential membrane filtration [J]. Environment International, 1997,23(4):441-451.

[18] Griffin C G, Finlay J C, Brezonik P L, et al. Limitations on using CDOM as a proxy for DOC in temperate lakes [J]. Water Research, 2018,144(1):719-727.

[19] Erlandsson M, Futter M N, Kothawala D N, et al. Variability in spectral absorbance metrics across boreal lake waters [J]. Journal of Environmental Monitoring Jem, 2012,14(10):2643-2652.

[20] Clare F, Sch?fer T, Bauer A, et al. Generation of humic and fulvic acid from Callovo-Oxfordian clay under high alkaline conditions [J]. Science of The Total Environment, 2003,317(1–3):189-200.

[21] Nishijima W, Jr G E S. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon [J]. Chemosphere, 2004,56(2):113-119.

[22] 趙紫凡,孫 歡,蘇雅玲.基于紫外-可見光吸收光譜和三維熒光光譜的腐殖酸光降解組分特征分析[J]. 湖泊科學, 2019,31(4):1088- 1098.

Zhao Z F, Sun H, Su Y L. Photodegradation response of humic acid using UV-Visible absorption and Excitation-Emission Matrix Spectra [J]. Journal of Lake Sciences, 2019,31(4):1088-1098.

[23] Griffin C G, Finlay J C, Brezonik P L, et al. Limitations on using CDOM as a proxy for DOC in temperate lakes [J]. Water Research, 2018,144:719-727.

[24] Messetta M L, Hegoburu C, Casas-Ruiz J P, et al. Characterization and qualitative changes in DOM chemical characteristics related to hydrologic conditions in a Pampean stream [J]. Hydrobiologia, 2018, 808(1):201-217.

[25] Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001,46(1):38-48.

[26] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescentdissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009,40(6):706-719.

[27] Zhang Y, Liu M, Qin B, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation [J]. Hydrobiologia, 2009,627(1):159-168.

[28] Bai L, Cao C, Wang C, et al. Toward quantitative understanding of the bioavailability of dissolved organic matter in freshwater lake during cyanobacteria blooming [J]. Environmental science & technology, 2017,51(11):6018-6026.

[29] 韓玉麟,魏 紅,郝 淼,等.夏季渭河西安段溶解性有機質(DOM)的特征、分布及來源分析[J]. 環境化學, 2021,40(3):717-728.

Han Y L, Wei H, Hao M, et al. Characteristics, distribution and source analysis of dissovled organic matter in Xi’An section of Weihe River in summer [J]. Environmental Chemistry, 2021,40(3):1-12.

[30] 徐兵兵.南苕溪溶解性有機質光譜特性及其與水質參數的相關性研究[J]. 環境污染與防治, 2021,43(9):1144-1150,1158.

Xu B B. Spectroscopy characterization of dissolved organic matter and its relationships with water quality parameters in the Sthou [J]. Environmental Pollution and Control, 2021,43(9):1144-1150,1158.

[31] 賈世琪,楊 芳,王希歡,等.白洋淀秋季溶解性有機質組分與浮游植物的關系研究[J]. 環境污染與防治, 2021,43(9):1101-1107.

Jia S Q, Yang F, Wang X H, et al. Relationship between DOM components and phytoplankton in Baiyangdian Lake in autumn [J]. Environmental Pollution and Control, 2021,43(9):1101-1107.

[32] 張紫薇,周石磊,張甜娜,等.崗南水庫沉積物溶解性有機物光譜時空分布特征及環境意義[J]. 環境科學學報, 2021,41(9):3598-3611.

Zhang Z W, Zhou S L, Zhang T N, et al. Spatiotemporal evolution and environmental significance of dissolved organic matter (DOM) in sediments of Gangnan reservoir [J]. Acta Scientiae Circumstantiae, 2021,41(9):3598-3611.

[33] 劉東萍,高紅杰,崔 兵,等.白塔堡河底泥DOM組成結構的熒光光譜與多元統計模型表征[J]. 環境工程技術學報, 2021,11(2):249- 257.

Liu D P, Gao H, Chui B, et al. Fluorescence spectra and multivariate statistical model characterization of DOM composition structure of Baitapu River sediment [J]. Journal of Environmental Engineering Technology, 2021,11(2):249-257.

[34] 宋柯崢,蔡啟佳,洪 培,等.武漢南湖可溶解性有機物的來源與組成分析[J]. 環境科學與技術, 2021,44(3):120-129.

Song K Z, Cai Q J, Hong P, et al. Sources, composition and spatial distribution of dissolved organic matter in Nanhu Lake, Wuhan [J]. Environmental Science & Technology, 2021,44(3):120-129.

[35] 閆曉寒,韓 璐,文 威,等.遼河保護區水體溶解性有機質空間分布與來源解析[J]. 環境科學學報, 2021,41(4):1419-1427.

Yan X H, Han L, Wen W, et al. Spectral characteristics and spatial distribution of DOM in surface water of Liaohe reservation zone [J]. Acta Scientiae Circumstantiae, 2021,41(4):1419-1427.

[36] 林子深,黃廷林,楊尚業,等.秦嶺北麓河流夏季有色溶解有機物分布特征及影響因素[J]. 環境科學, 2020,41(5):2210-2220.

Lin Z S, Huang T L, Yang S Y, et al. Distribution characteristics and influencing factors of chromophoric dissolved organic matter in a Northern-Side River of the Qinling Mountains in summer [J]. Environmental Science, 2020,41(5):2210-2220.

[37] Shi Y, Zhang Y Q, Li Y P, et al. Influence of land use and rainfall on the optical properties of dissolved organic matter in a key drinking water reservoir in China-ScienceDirect [J]. Science of The Total Environment, 699:134301-134301.

[38] C Santín, Yamashita Y , Otero X L , et al. Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis [J]. Biogeochemistry, 2009,96(1-3):131-147.

[39] Baker A, Curry M. Fluorescence of leachates from three contrasting landfills [J]. Water Research, 2004,38(10):2605-2613.

[40] Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis [J]. Limnology & Oceanography, 2005, 50(2):686-697.

[41] A W Z Z, A H H Z, A J Z, et al. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea [J]. Journal of Marine Systems, 2018,180:9-23.

[42] NIE Z Y, WU J Y, WU Xiaodong, et al. 2017. Comparative study on the interpretation of EEMs of fluorescent dissolved organic matter using the new and traditional self-organizing map methods. ACTA SCTENTIAE CIRCUMSTANTIAE, 37(1):357-369.

[43] Zhou J, Wang J, Baudon A, et al. Improved fluorescence excitation-emission matrix regional integration to quantify spectra for fluorescent dissolved organic matter [J]. Journal of Environmental Quality, 2013,42(3):925-930.

[44] Yu M D, Zhang H, He X S, et al. Spectral characteristic of dissolved organic matter in Xiaohe river, Hebei [J]. Environmental Science, 2015,36(9):3194-3202.

[45] 張 博,王書航,姜 霞,等.太湖五里湖水體懸浮物中水溶性有機質(WSOM)的熒光光譜組分鑒別及其與氮形態的關系[J]. 湖泊科學, 2018,30(1):102-111.

Zhang B, Wang S, JIiang X, et al. Identification of WSOM fluorescence spectral components in suspended solids and corre-lation analysis with nitrogen forms of Lake Wuli Lake Taihu [J]. Journal of Lake Sciences, 2018,30(1):102-111.

[46] 陳俊伊,王書航,姜 霞,等.蠡湖表層沉積物熒光溶解性有機質(FDOM)熒光光譜特征[J]. 環境科學, 2017,38(1):70-77.

Chen J Y, Wang S H, Jiang X, et al. Fluorescence spectral characteristics of fluorescent dissolved organic matter (FDOM) in the surface sediments from Lihu Lake [J]. Environmental Science, 2017,38(1):70-77.

Spectral characteristics of dissolved organic matter in the overlying water from Nanyi Lake.

LI Hai-bin1,2,3, XIE Fa-zhi1,2,3*, LI Guo-lian2, ZHAI Hong-xia1,3, GONG Xue1,3, LIU Zhan1,3,LUO Kun1,3, YUAN Zhi-wei2

(1.School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China;2.Anhui Key Laboratory of Water Pollution Control and Wastewater Resource, Hefei 230601, China;3.Anhui Province International Research Center on Advanced Building Materials, Hefei 230601, China)., 2022,42(7):3306~3315

In order to investigate the spectral characteristics and the sources of dissolved organic matter (DOM) in the overlying water of the Nanyi Lake. Herein, ultraviolet-visible (UV-Vis) absorption and three-dimensional fluorescence excitation-emission matrix (EEMs) were utilized to characterize the DOM. Parallel factor analysis (PARAFAC), fluorescence regional integration, correlation analysis, principal component analysis, and cluster analysis were applied to qualitative and quantitative analysis on the DOM. Based on the absorption parameters of(440),2/3,3/4,Rof UV-Vis spectrum, it was found that DOM has humification and autogenesis characteristics. Moreover,2/3,3/4and(440) had positively correlation (<0.01,<0.05), and there was no significant correlation betweenRand(440) (>0.05). The relative molecular weight of DOM increased with increasing the humic acid concentration, but the humic acid concentration cannot be used to determine the sources of dissolved organic matter (DOM). According to the(440) values, the average concentration of dissolved organic carbon (DOC) in the water was calculated to be 26.79mg/L, and the DOC value in the outlet area of the lake was 10.15mg/L. From the analysis of fluorescence indices (:, FI, BIX, HIX, Fn(280), Fn(355)), the DOM exhibited low humification and highly autochthonous characteristics. The spatial distribution of the relative concentration of protein-like components (Fn(280)) was gradually increased from west to east, but the peak values of the relative concentration of humic-like components (Fn(355)) were observed in the estuary and lake outlet. Three fluorescence components of fulvic-like, tryptophan-like and humic-like identified by PARAFAC model were named as C1, C2, C3, and the contribution of C1, C2, C3 to the total fluorescence intensity were 21.96%, 13.36%, 84.21%, respectively. The results of the FRI method showed that the sum of the proportions of protein-like substances (region I +II) was as large as 49.65%, and it was mainly related to anthropogenic activities. Certain correlation was observed between the fluorescence components and the spectral parameters, and it was found that the C1, C3 and:, BIX were significantly negative correlated (<0.001). C3 and:, BIX, Fn (355) were positive correlated (<0.001). Based on the principal components analysis and cluster analysis, the DOM presented different characteristics between the 16sites in the Nanyi Lake. Overall, the DOM was significantly affected by endogenous input, and the control and management of pollutants released from the lake should be strengthened.

DOM;ultraviolet-visible spectrum;fluorescence spectroscopy;PARAFAC;FRI;cluster analysis

X524

李海斌(1989-),男,安徽省安慶人,講師,碩士,主要從事研究方向為水體富營養化與水污染控制研究.發表論文7篇.

2021-12-15

國家自然科學基金資助項目(21777001);安徽省重點研發計劃(202004i07020006);安徽省高校省級自然科學研究項目(KJ2020JD13);安徽省先進建筑材料國際聯合研究中心主任基金(JZCL014ZZ)

* 責任作者, 教授, fzxie@ahjzu.edu.cn

A

1000-6923(2022)07-3306-10

猜你喜歡
腐殖質溶解性腐殖酸
共沉淀引發的溶解性有機質在水鐵礦/水界面的分子分餾特性*
腐殖質和生物肥料對植物發育和微生物活性的協同作用
垃圾滲濾液中溶解性有機質與重金屬絡合機制研究現狀及展望
腐殖酸水溶肥助力農業高質量發展
正丁醇/丙酸與腐殖酸相互作用的NMR研究
物質的溶解性(部級優課)
《附錄I部分酸、堿和鹽的溶解性表》教學案例
淺談開展土壤肥料綠色革命離不開腐植酸
腐植酸在優化土肥關系中發揮重要作用
水稻土有機碳及腐殖質結構特征的研究進展
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合